Power quality event classification using complex wavelets phasor models and customized convolution neural network

نویسندگان

چکیده

Origin and triggers of power quality (PQ) events must be identified in prior, order to take preventive steps enhance quality. However it is important identify, localize classify the PQ determine causes origins disturbances. In this paper a novel algorithm presented voltage variations into six different considering space phasor model (SPM) diagrams, dual tree complex wavelet transforms (DTCWT) sub bands convolution neural network (CNN) model. The input data converted SPM data, transformed using 2D DTCWT low pass high which are simultaneously processed by CNN perform classification events. proposed method based on Google Net trained with default configuration as deep designer MATLAB environment. achieve higher accuracy reduced training time than compared reported event methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Quality Signal Classification using Convolutional Neural Network

Researchers are exploring challenging techniques for the analysis of power quality signals for the detection of power quality (PQ) disturbances. PQ disturbances have become a serious problem for the end users and electric utilities. Numerous algorithms have been developed for the classification of unstructured data. In this paper, the classification of power quality signals are performed based ...

متن کامل

Power Quality Disturbance Classification Using Adaptive Linear Neural Network (ADALINE) and Feed Forward Neural Network (FFNN)

Abstract: This paper presents a dual neural network based technique for detecting and classifying the power quality disturbances. In the proposed method, Adaptive Linear Neural Network is used to extract the rms voltage for harmonics and Interharmonics estimations. With the help of these indices, PQ disturbances such as Sag, Swell, Outages are detected and classified, Harmonics and Interharmoni...

متن کامل

Multiscale Classification Using Complex Wavelets and Hidden Markov Tree Models

Multiresolution signal and image models such as the hidden Markov tree (HMT) aim to capture the statistical structures of smooth and singular (textured and edgy) regions. Unfortunately, models based on the orthogonal wavelet transform suffer from shift-variance, making them less accurate and realistic. In this paper, we extend the HMT modeling framework to the complex wavelet transform, which f...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2022

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijece.v12i1.pp22-31